Using a semiclassical model for three interacting fluctuating dipoles we introduce a simple scenario in which the nonadditivity of the van der Waals dispersion forces arises in a very transparent way. For simplicity, we illustrate our model in the case of nonretarded dispersion forces. The argument can be straightforwardly generalized to the case of N interacting fluctuating dipoles. For pedagogical reasons, we also give a brief review of some basic points concerning van der Waals forces.

1.
J. D. van der Waals, “Over de continuiteit van den gas-en vloeistoftoestand,” Dissertation, Leiden, 1873.
2.
Dieter Langbein, Theory of Van der Waals Attraction, Springer Tracts in Modern Physics, Vol. 72 (Springer-Verlag, Berlin, 1974).
3.
H. Margenau and N. R. Kestner, Theory of Intermolecular Forces (Pergamon, New York, 1969).
4.
P. W. Milonni, The Quantum Vaccum: An Introduction to Quantum Electrodynamics (Academic, New York, 1994).
5.
F.
London
, “
Zur Theorie und Systematik der Molecularkrafte
,”
Z. Phys.
63
,
245
(
1930
).
6.
H. B. G.
Casimir
and
D.
Polder
, “
The Influence of Retardation on the London-van der Waals Forces
,”
Phys. Rev.
73
,
360
372
(
1948
).
7.
D.
Tabor
and
R. H. S.
Winterton
, “
Direct measurement of normal and retarded van der Waals forces
,”
Nature (London)
219
,
1120
1121
(
1968
).
8.
H. B. G.
Casimir
, “
On the Attraction Between Two Perfectly Conducting Planes
,”
Proc. K. Ned. Akad. Wet.
51
,
793
795
(
1948
).
9.
E. M.
Lifshitz
, “
The Theory of Molecular Attractive Forces between Solids
,”
Sov. Phys. JETP
2
,
73
83
(
1956
).
10.
J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), 2nd ed., p. 395.
11.
P. W.
Milonni
and
P. L.
Knight
, “
Retardation in the resonant interaction of two identical atoms
,”
Phys. Rev. A
10
,
1096
1108
(
1974
);
P. W.
Milonni
and
P. L.
Knight
, “
Retarded interaction of two nonidentical atoms
Phys. Rev. A
,
11
,
1090
1092
(
1975
).
12.
P. W.
Milonni
, “
Semiclassical and Quantum-Electrodynamical Approach in NonRelativistic Theory
,”
Phys. Rep., Phys. Lett.
25C
,
1
81
(
1976
).
13.
B. M.
Axilrod
and
E.
Teller
, “
Interaction of the van der Waals Type Between Three Atoms
,”
J. Chem. Phys.
11
,
299
300
(
1943
).
14.
M. J.
Sparnaay
, “
Measurements of Attractive Forces between Flat Plates
,”
Physica (Amsterdam)
24
,
751
764
(
1958
).
15.
S. K.
Lamoreaux
, “
Demonstration of the Casimir Force in the 0.6 to 6 μm Range
,”
Phys. Rev. Lett.
78
,
5
8
(
1997
).
16.
U.
Mohideen
and
A.
Roy
, “
A precision measurement of the Casimir force from 0, 1 to 0, 9 μm
,” hep-ph/9805038.
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.