Coupled harmonic oscillators occupy an important place in physics teaching. It is shown that they can be used for illustrating an increase in entropy caused by limitations in measurement. In the system of coupled oscillators, it is possible to make the measurement on one oscillator while averaging over the degrees of freedom of the other oscillator without measuring them. It is shown that such a calculation would yield an increased entropy in the observable oscillator. This example provides a clarification of Feynman’s rest of the universe.

1.
R. P. Feynman, Statistical Mechanics (Benjamin/Cummings, Reading, MA, 1972).
2.
L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, London, 1958).
3.
R. W.
Davies
and
K. T. R.
Davies
, “
On the Wigner Distribution Function of an Oscillator
,”
Ann. Phys. (N.Y.)
89
,
261
273
(
1975
).
4.
J. von Neumann, Die Mathematische Grundlagen der Quanten-mechanik (Springer, Berlin, 1932);
see also J. von Neumann, Mathematical Foundation of Quantum Mechanics (Princeton University Press, Princeton, 1955).
5.
E. P.
Wigner
and
M. M.
Yanase
,
Information Contents of Distributions
,
Proc. Natl. Acad. Sci. (U.S.A.)
49
,
910
918
(
1963
).
6.
Ugo
Fano
, “
Description of States in Quantum Mechanics by Density Matrix and Operator Techniques
,”
Rev. Mod. Phys.
29
,
74
93
(
1957
).
7.
Karl Blum, Density Matrix Theory and Applications (Plenum, New York, 1981).
8.
D.
Han
,
Y. S.
Kim
, and
M. E.
Noz
, “O(3,3)-like Symmetries of Coupled Harmonic Oscillators,”
J. Math. Phys.
36
,
3940
3954
(
1995
).
9.
P. K.
Aravind
, “
Geometric Interpretation of the Simultaneous Diagonalization of Two Quadratic Forms
,”
Am. J. Phys.
57
,
309
311
(
1989
).
10.
Y. S. Kim and M. E. Noz, Phase Space Picture of Quantum Mechanics (World Scientific, Singapore, 1991).
11.
B.
Yurke
and
M.
Potasek
, “
Obtainment of Thermal Noise from a Pure State
,”
Phys. Rev. A
36
,
3464
3466
(
1987
).
12.
A. K.
Ekert
, and
P. L.
Knight
, “
Correlations and Squeezing of Two-mode Oscillations
,”
Am. J. Phys.
57
,
692
697
(
1989
).
13.
S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row–Peterson, Elmsford, NY, 1961).
14.
A. L. Fetter and J. D. Walecka, Quantum Theory of Many Particle Systems (McGraw–Hill, New York, 1971).
15.
P. A. M.
Dirac
, “
A Remarkable Representation of the 3+2 de Sitter Group
,”
J. Math. Phys.
4
,
901
909
(
1963
).
16.
Carlton M.
Caves
and
Bonny L.
Schumaker
, “
New Formalism for Two-Photon Quantum Optics. I. Quadrature Phases and Squeezed States
,”
Phys. Rev. A
31
,
3068
3092
(
1985
);
Bonny L.
Schumaker
and
Carlton M.
Caves
, “
New Formalism for Two-Photon Quantum Optics. II. Mathematical Foundation and Compact Notations
,”
Phys. Rev. A
31
,
3093
3111
(
1985
).
17.
D.
Han
,
Y. S.
Kim
, and
Marilyn E.
Noz
, “
Linear Canonical Transformations of Coherent and Squeezed States in the Wigner Phase Space. III. Two-mode States
,”
Phys. Rev. A
41
,
6233
6244
(
1990
).
18.
Y. S.
Kim
and
V. I.
Man’ko
, “
Time-dependent Mode Coupling and Generation of Two-mode Squeezed States
,”
Phys. Lett. A
157
,
226
228
(
1991
).
19.
A.
Muti
,
H. A.
Schmitt
, and
M.
Sargent
III
, “
Finite-dimensional Matrix Representations as Calculational Tools in Quantum Optics
,”
Am. J. Phys.
61
,
729
734
(
1993
).
20.
Y. S.
Kim
and
M. E.
Noz
, “
Covariant Harmonic Oscillators and the Parton Picture
,”
Phys. Rev. D
15
,
335
338
(
1977
).
21.
Y. S.
Kim
, “
Observable Gauge Transformations in the Parton Picture
,”
Phys. Rev. Lett.
63
,
348
351
(
1989
).
22.
F.
Iachello
and
S.
Oss
, “
Model of n Coupled Anharmonic Oscillators and Applications to Octahedral Molecules
,”
Phys. Rev. Lett.
66
,
2976
2979
(
1991
).
23.
H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo Field Dynamics and Condensed States (North-Holland, Amsterdam, 1982).
24.
D.
Han
,
Y. S.
Kim
, and
Marilyn E.
Noz
, “
Lorentz-Squeezed Hadrons and Hadronic Temperature
,”
Phys. Lett. A
144
,
111
115
(
1989
).
25.
Y. S.
Kim
and
E. P.
Wigner
, “
Entropy and Lorentz Transformations
,”
Phys. Lett. A
147
,
343
347
(
1990
).
26.
Stephen M.
Barnett
and
Simon J. D.
Phoenix
, “
Information Theory, Squeezing and Quantum Correlations
,”
Phys. Rev. A
44
,
535
545
(
1991
).
27.
Y. S.
Kim
,
M. E.
Noz
, and
S. H.
Oh
, “
A Simple Method for Illustrating the Difference between the Homogeneous and Inhomogeneous Lorentz Groups
,”
Am. J. Phys.
47
,
892
897
(
1979
).
28.
Y. S. Kim and M. E. Noz, Theory and Applications of the Poincaré Group (Reidel, Dordrecht, 1986).
29.
R. P. Feynman, “The Behavior of Hadron Collisions at Extreme Energies,” in High Energy Collisions, Proceedings of the Third International Conference, Stony Brook, New York, edited by C. N. Yang et al. (Gordon and Breach, New York, 1969), pp. 237–249.
30.
R. P.
Feynman
,
M.
Kislinger
, and
F.
Ravndal
, “
Current Matrix Elements from a Relativistic Quark Model
,”
Phys. Rev. D
3
,
2706
2732
(
1971
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.