Coupled harmonic oscillators occupy an important place in physics teaching. It is shown that they can be used for illustrating an increase in entropy caused by limitations in measurement. In the system of coupled oscillators, it is possible to make the measurement on one oscillator while averaging over the degrees of freedom of the other oscillator without measuring them. It is shown that such a calculation would yield an increased entropy in the observable oscillator. This example provides a clarification of Feynman’s rest of the universe.
REFERENCES
1.
R. P. Feynman, Statistical Mechanics (Benjamin/Cummings, Reading, MA, 1972).
2.
L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, London, 1958).
3.
R. W.
Davies
and K. T. R.
Davies
, “On the Wigner Distribution Function of an Oscillator
,” Ann. Phys. (N.Y.)
89
, 261
–273
(1975
). 4.
J. von Neumann, Die Mathematische Grundlagen der Quanten-mechanik (Springer, Berlin, 1932);
see also J. von Neumann, Mathematical Foundation of Quantum Mechanics (Princeton University Press, Princeton, 1955).
5.
E. P.
Wigner
and M. M.
Yanase
, Information Contents of Distributions
, Proc. Natl. Acad. Sci. (U.S.A.)
49
, 910
–918
(1963
). 6.
Ugo
Fano
, “Description of States in Quantum Mechanics by Density Matrix and Operator Techniques
,” Rev. Mod. Phys.
29
, 74
–93
(1957
). 7.
Karl Blum, Density Matrix Theory and Applications (Plenum, New York, 1981).
8.
D.
Han
, Y. S.
Kim
, and M. E.
Noz
, “-like Symmetries of Coupled Harmonic Oscillators,” J. Math. Phys.
36
, 3940
–3954
(1995
). 9.
P. K.
Aravind
, “Geometric Interpretation of the Simultaneous Diagonalization of Two Quadratic Forms
,” Am. J. Phys.
57
, 309
–311
(1989
).10.
Y. S. Kim and M. E. Noz, Phase Space Picture of Quantum Mechanics (World Scientific, Singapore, 1991).
11.
B.
Yurke
and M.
Potasek
, “Obtainment of Thermal Noise from a Pure State
,” Phys. Rev. A
36
, 3464
–3466
(1987
).12.
A. K.
Ekert
, and P. L.
Knight
, “Correlations and Squeezing of Two-mode Oscillations
,” Am. J. Phys.
57
, 692
–697
(1989
).13.
S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row–Peterson, Elmsford, NY, 1961).
14.
A. L. Fetter and J. D. Walecka, Quantum Theory of Many Particle Systems (McGraw–Hill, New York, 1971).
15.
P. A. M.
Dirac
, “A Remarkable Representation of the de Sitter Group
,” J. Math. Phys.
4
, 901
–909
(1963
).16.
Carlton M.
Caves
and Bonny L.
Schumaker
, “New Formalism for Two-Photon Quantum Optics. I. Quadrature Phases and Squeezed States
,” Phys. Rev. A
31
, 3068
–3092
(1985
);Bonny L.
Schumaker
and Carlton M.
Caves
, “New Formalism for Two-Photon Quantum Optics. II. Mathematical Foundation and Compact Notations
,” Phys. Rev. A
31
, 3093
–3111
(1985
). 17.
D.
Han
, Y. S.
Kim
, and Marilyn E.
Noz
, “Linear Canonical Transformations of Coherent and Squeezed States in the Wigner Phase Space. III. Two-mode States
,” Phys. Rev. A
41
, 6233
–6244
(1990
).18.
Y. S.
Kim
and V. I.
Man’ko
, “Time-dependent Mode Coupling and Generation of Two-mode Squeezed States
,” Phys. Lett. A
157
, 226
–228
(1991
).19.
A.
Muti
, H. A.
Schmitt
, and M.
Sargent
III, “Finite-dimensional Matrix Representations as Calculational Tools in Quantum Optics
,” Am. J. Phys.
61
, 729
–734
(1993
).20.
Y. S.
Kim
and M. E.
Noz
, “Covariant Harmonic Oscillators and the Parton Picture
,” Phys. Rev. D
15
, 335
–338
(1977
).21.
Y. S.
Kim
, “Observable Gauge Transformations in the Parton Picture
,” Phys. Rev. Lett.
63
, 348
–351
(1989
).22.
F.
Iachello
and S.
Oss
, “Model of n Coupled Anharmonic Oscillators and Applications to Octahedral Molecules
,” Phys. Rev. Lett.
66
, 2976
–2979
(1991
).23.
H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo Field Dynamics and Condensed States (North-Holland, Amsterdam, 1982).
24.
D.
Han
, Y. S.
Kim
, and Marilyn E.
Noz
, “Lorentz-Squeezed Hadrons and Hadronic Temperature
,” Phys. Lett. A
144
, 111
–115
(1989
).25.
Y. S.
Kim
and E. P.
Wigner
, “Entropy and Lorentz Transformations
,” Phys. Lett. A
147
, 343
–347
(1990
).26.
Stephen M.
Barnett
and Simon J. D.
Phoenix
, “Information Theory, Squeezing and Quantum Correlations
,” Phys. Rev. A
44
, 535
–545
(1991
).27.
Y. S.
Kim
, M. E.
Noz
, and S. H.
Oh
, “A Simple Method for Illustrating the Difference between the Homogeneous and Inhomogeneous Lorentz Groups
,” Am. J. Phys.
47
, 892
–897
(1979
).28.
Y. S. Kim and M. E. Noz, Theory and Applications of the Poincaré Group (Reidel, Dordrecht, 1986).
29.
R. P. Feynman, “The Behavior of Hadron Collisions at Extreme Energies,” in High Energy Collisions, Proceedings of the Third International Conference, Stony Brook, New York, edited by C. N. Yang et al. (Gordon and Breach, New York, 1969), pp. 237–249.
30.
R. P.
Feynman
, M.
Kislinger
, and F.
Ravndal
, “Current Matrix Elements from a Relativistic Quark Model
,” Phys. Rev. D
3
, 2706
–2732
(1971
).
This content is only available via PDF.
© 1999 American Association of Physics Teachers.
1999
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.