It is shown that the operator methods of supersymmetric quantum mechanics and the concept of shape invariance can profitably be used to derive properties of spherical harmonics in a simple way. The same operator techniques can also be applied to several problems with noncentral vector and scalar potentials. As examples, we analyze the bound state spectra of an electron in a Coulomb plus an Aharonov–Bohm field and/or in the magnetic field of a Dirac monopole.
This content is only available via PDF.
© 1997 American Association of Physics Teachers.
1997
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.