The chaotic motion of the elastic pendulum is studied by means of four indicators, the Poincaré section, the maximum Lyapunov exponent, the correlation function, and the power spectrum. It is shown that for very low and very large energies the motion is regular while it is very irregular for intermediate energies. Analytical considerations and graphical representations concerning the applicability of KAM theorem are also presented. This system and the type of description used are very suitable to introduce undergraduate students to nonlinear dynamics.

This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.